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Boundary-layer velocities and mass transport 
in short-crested waves 

By J. R. C. HSU, R. SILVESTER A N D  Y. TSUCHIYA? 
Department of Civil Engineering, The University of Western Australia, 

Nedlands, Western Australia 

(Received 12 July 1978 and in revised form 26 November 1979) 

A comprehensive programme of research is being undertaken on short-crested waves 
produced by obliquely reflecting waves from a rigid vertical wall. This has included 
a new wave theory to third-order approximation. The second-order Eulerian water- 
particle velocities throughout the bottom boundary layer are now investigated. From 
this the resulting mass transport is considered to the first approximation. The vertical 
velocity component has a non-zero value within and just. beyond the boundary layer. 
The limiting two-dimensional cases of progressive and standing waves are obtained 
and compared with published results. Comparison is also made with available ex- 
perimental data. Graphs of some analytical solutions are presented. 

1. Introduction 
Progressive and standing waves have been examined for oscillatory motions, as 

well as net movements of water particles known as mass transport. Theoretical 
solutions and experimental verification have been provided for inviscid conditions 
for the interior of the fluid and for the viscous bottom boundary layer, the latter for 
both laminar and turbulent theory. 

The case for short-crested waves has received very little attention. This is unfortu- 
nate since it is submitted that such systems are more predominant in nature than the 
progressive and standing waves normally analysed theoretically and tested experi- 
mentally in the flume. Short-crested waves arise from oblique reflexion on vertical or 
sloping surfaces, diffraction from either end of an island structure, differential refrac- 
tion across the continental shelf, swell arriving from two storm centres simultaneously, 
and waves within or just outside a fetch. However, only a special case of two interacting 
wave trains of equal amplitude and period is considered in this work. 

Short-crested waves can be equated to two progressive waves of the same amplitude 
propagating at an angle to each other. The resultant water-particle motions vary 
spatially both in the vertical and horizontal directions. The simple case of two wave 
trains of equal height and period is shown schematically in figure 1, where it is seen 
that rectilinear and elliptical orbits exist along certain alignments. Along that of the 
combined crest propagation (i.e. a t  y / L ,  = $,1, ...) water-particle orbits are in a 
vertical plane. Half-way between, rectilinear horizontal oscillations occur (i.e. a t  
y / L ,  = t ,$, . . .); where y / L ,  = 4, #, Q, .. .: the orbits are ellipses a t  an angle to the 
vertical which depends upon their depth, being in a horizontal plane a t  the bed. 
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FIGURE 1. Definition sketch of short-crested wave produced by reflexion showing 

co-ordinates and ideal orbital motions at  various depths. 6' = 45". 

The maximum orbital velocities, resulting from the combined wave height, are 
nearly double those of the progressive waves making up the system. The elliptical 
orbits between the tL,  and SL, etc. alignments extend right to the bed. It is easy to 
see that these motions will aid the suspension of bed material. Silvester (1972)  has 
described sand-ripple formations on a sandy bed produced by waves reflected obliquely 
from a vertical wall. He has also stressed the importance of wave reflexion in coastal 
sediment transport (Silvester 1977) .  

Hsu, Tsuchiya & Silvester (1979)  have derived a third-order approximation for 
particle motions in short-crested waves by a perturbation method. This yields the 
two limiting conditions of Stokes and standing waves. The results a t  the bed from this 
wave theory will be used as the matching condition to derive motions within the 
bottom layer. 

Time-varying water-particle velocities within the boundary layer are important 
in understanding peak orbital velocities very close to the bed, where sedimentary 
particles can be influenced. The changing orientations of horizontal components 
across the crest length, which can constitute elliptical patterns of motion, provide 
additional lifting capacity. The vertical velocity component generated within the 
boundary layer for small fractions of the wave cycle could help sustain particles in 
suspension for longer periods. This vertical component has been alluded to by Stuart 
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(1963), Schlichting (1968), Noda (1968, 1970), Isaacson (1976) and Liu & Davis 
(1977), for the two-dimensional cases, where a secular term appeared in their solutions. 
This will be further discussed in 3 3. 

Using a superposition of linear velocity potentials and a Lagrangian formulation, 
Mei, Liu & Carter (1972) derived a first approximation to the mass-transport velocity 
within the bottom boundary layer. Their final expression for the velocity component 
along the wall cannot be reduced to the limiting progressive wave as given by Longuet- 
Higgins (1953). Similar analyses by Hunt 8: Johns (1963), Tanaka, Irie & Ozasa (1972) 
and Dore (1974) all refer to the outer edge of the bottom layer. Hence, it is believed 
that the Eulerian water-particle motions to second order and the vertical component 
of mass transport, herein presented for short-crested waves, have not been derived 
previously. 

Experiments by Tanaka et al. (1972) utilized coal and sand tracers in a wave flume 
2.5 m wide, but only directions were reported, not rate of transport. No quantitative 
measurements have been reported on the kinematics or mass transport in short- 
crested waves within the bottom layer until Hsu (1977) reported the use of polystyrene 
beads smaller in diameter than the boundary layer and with slight negative buoyancy. 
Their motions a t  the bed over the full region of the short-crested system were obser- 
vable through the transparent ceiling of a tunnel beneath a wave basin. Cine photo- 
graphy of these tracers permitted spot positioning every & second, but every 
second frame was used to compute the velocities and mass transport over several 
wave cycles. A comparison is made with the new theory. 

The limiting two-dimensional cases are also derived for both the Eulerian water- 
particle velocities and mass transport. The latter agree with solutions by Longnet- 
Higgins (1953) for progressive and standing waves. 

2. Third-order approximation to short-crested waves 
Hsu et al. (1979) have derived a third-order approximation of wave theory by a 

perturbation method. To solve the basic governing equations for describing the three- 
dimensional irrotational, inviscid wave motion, all variables were non-dimensionalized. 
Let E be the small parameter ka, in which a is the wave amplitude of the short-crested 
waves to  the first-order approximation, then the following dimensionless quantities 
( A )  may be introduced: 

(1) I &at Q , R  i) = k2E-l(gk)-+ &x, y ,  z ,  t ) ,  

OJ = f l / ( g k ) + ,  

h 2 = kx, 4j = k y ,  z = kz, f =  V t ,  d = kd, 

in which (T is the angular frequency of incident and reflected waves or 2nlT (T being 
the wave period), k is the wavenumber or 2nlL (L being the wavelength of the com- 
ponent waves), x, y and z are the Cartesian co-ordinates, t the time, g the acceleration 
due to gravity and # the wave velocity potential. Let L, and L, be the horizontal 
distances between crests in the x and y directions respectively. Then the components 
of the wavenumber k may be defined respectively as 

m, = 277/L, = k sin 0 = mk, n, = 2n/L, = k cos 6 = n k ,  (2) 
11-2 
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in which 8 is the incident angle of the wave orthogonal measured from the normal to 
the wall (see figure 1) .  When the incident angle vanishes, a normal standing wave 
appears, whilst a progressive wave results when B = in-. From equation (2), 

my+nf = k2, m2+n2 = 1.  (3) 

4 = 40 +e41 + &“2 + 0(e3), 
w = O0 + €wl + ie2w2 + o(e3). 

The perturbed solutions are assumed to be 

(4) 1 
The carets denoting dimensionless quantities in this section will now be omitted for 
simplicity, unless otherwise specified. Only the final expressions for $ and w in each 
order of approximation are listed below. 

First-order approximation (at order eo), 

cosh ( z  + d )  
cos ny  sin (mx - t ) ,  = [tanh d]*. $0 = wo sinhd 

Second-order approximation (at order e) ,  

$1 = PI t + Pz cosh 2(2 + d )  cos 2ny sin 2(mx - t )  + p3 cosh 2m(z + d )  sin 2(mx - t ) ,  

w1 = 0, 

in which 

t 

Pl = & ( - - W ~ ~ + W ~ ) ,  I 

Here 

3 (w,7-w0) 
” =  cosh 2d ’ p 3 =  16cosh2md‘ 

K ,  = (1  + w&)Kl, w, = [tanh (md)]*. 1 
The third-order approximation (at order c2) was presented 

but is not required in the following analysis. 

(7) 

(8) 

by Hsu et al. (1979) 

3. Laminar boundary at the bottom 
A perturbation method is used to derive an approximate solution to the three- 

dimensional viscous laminar boundary-layer equations on a rigid and smooth hori- 
zontal bed for this short-crested wave system. The newly developed wave theory 
(Hsu et al. 1979) is used to specify the Eulerian velocities at  the outer edge of the 
boundary layer. The Eulerian water-particle velocity field within the bottom layer 
is then obtained by solving the dimensionless governing equations to satisfy the 
various boundary conditions. Effects of wave damping due to viscosity are neglected. 
Only small-amplitude motions are considered. 

Approximate solution to laminar boundary layer 

Taking rectangular Cartesian co-ordinates ( x ,  y ,  z )  with associated components of 
fluid velocity (u, v, w )  in each direction respectively, it is assumed that the z axis i s  
vertically upwards from the bed and the x and y axes horizontal (x along the reflecting 
wall and y normal to it). 
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I n  the motion of a viscous medium over a fixed plate, the velocities (u, v) increase 
more or less rapidly from zero a t  bed to the values of (U, V )  given by potential theory 
in an  ideal fluid. Prandtl (1904) recognized that for small viscosity this domain of 
increasing velocity extended in practice only t o  a relatively small distance from the bed. 

Since the thickness of the bottom layer is small compared with the characteristic 
length scales of the wave train, the Prandtl boundary layer equations are applicable 
to  the motion within it. Introducing the subscripts x, y ,  z and t as the partial derivatives 
to the physical quantities, the governing Navier-Stokes equations in dimensional 
form are 

Ut + uux + vuy + wu, = -p,/p + v(u,, + u,, + uyy), 

where p is the density of fluid, p is the wave pressure and v the kinematic viscosity. It 
is reasonable to  assume that u,,g u,, or uyy, and so on, after examining the orders 
of magnitude of various terms. The continuity equation is given as 

and the pressure equations a t  the outer edge of the boundary layer are 

-p,/p = u,+ uu,+ vci,, 
-pulp = &+ Uv,+ vv,, 

for the x and y components respectively, subject to the boundary conditions 
u = v = w = O a t z  = 0,andu = Uandv = Vasz+ co,where Uand VaretheEulerian 
particle velocity components a t  the outer edge of the boundary layer, obtained from 
the wave motion in the interior of the fluid. 

Introducing the dimensionless quantities, 

D = kx, y^ = ky, 2 = [ ( g k ) * / ~ ] * ~ ,  J = kd, t" = &, 

(14) 
$(% g, 2, %) = k2€-1(gk)-*q%, y ,  2, t ) ,  

0 = 4 ( 9 k ) 4  9 = ( k / P d P ,  

a = (k /g)*u,  8 = (k /g )*v ,  8 = [v(gk)+]-&w, 

into (9)-( 13)) the governing equations can be transformed into dimensionless form 
(omitting the carets): 

W U t  + uu, + vuy + wu, = w u ,  + uu, + vri, + u,,, (15) 

W V t  + uv, + vvy + U'W, = wv, + uv, + V v ,  + v,,, (16) 

and u, + vy + UI, = 0. (17) 

An additional change of variable for x within the boundary layer is also introduced 
(Noda 1970)) 

or physically 6 = z / (vT/r ) t  in dimensional form, as a measure of distance from the 
bed within the boundary layer. It is worth noting that 6 = 271 corresponds to the 
outer edge of the boundary layer, as the boundary-layer thickness is usually calculated 
by S = 2(rvT)t (i.e. from replacing z in the dimensional form of equation (18) by the 
value of 8). 
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To ease the repeated listings for the dimensionless velocity components ( U ,  V ,  W )  
and (u, v, w), assume the expansion series in a small parameter 6 in the abstract form, 

W 

f = C dfi for ( U ,  V ,  W )  (19) 

and f = €ifi = d(fjp+fjs) for (u, v, w). (20) 

j=l  

W W 

j = 1  j =  1 

In (20), all fjp are time-dependent and ti, time-independent terms. 
For the water-particle velocity components in dimensionless form, Hsu et al. (1 979) 

have shown from the introduced variable transformations that the following con- 

(21) 
ditions exist: 

in which $h is the perturbed value of (4) by inserticg the solutions of $ho and $hl from 
(5) and (6). 

Let the Eulerian particle velocity a t  the outer edge of the boundary layer be 
represented by the velocity on the bed from the inviscid wave theory for z = - d. The 
dimensionless quantities ( U ,  V ,  W )  are therefore 

u = €$hz, v = €$hy, w = €$hZ, 

U = qi5zlz=-d = e(mwo/sinh d )  cos ny cos (mx- t )  + c2(2mp2 cos 2ny cos 2(mx - t )  

+ 2mp3 cos 2(mx - t ) ]  
= €Ul+€2U2+0(8), (22) 

and 
V = = - e(nuo/sinh d)  sin ny sin (mx - t )  -e2[2np2 sin 2ny sin 2(mx - t ) ]  

= e ~ ,  + € 2 ~  + 0(€3), 
but 

W = eQzlz=-d = 0, more particularly a t  the bed. 

(23) 

(24) 
Inserting the perturbed quantities of velocities from (20) and (22)-(24) into 

(15)-( 17), and collecting terms of each order in e yields the necessary equations to  
each order of approximation. To first order in 6, the governing equations in dimen- 
sionless form are 

with the boundary 

and the matching conditions 

The solutions of (25) that satisfy the boundary conditions of (26) and (27) are given 
in dimensionless form as 

ulp = U,, vlp = V, at, [+ 00. (27) 

u1 = _mwO cos ny [cos (mx - t )  - e-5 cos (mx - t + [)I, 
sinh d 

v n u ~  sin ny bin (mx - t )  - e-5 sin (mx - t + [)I, - sinhd 
t 

u0 cos ny [2&[sin (mx - t )  - sin (mx - t + in) + e-5 sin (mx - t + [+ in)]. w -- - sinh d 
(30) 
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The physical meaning of the terms in (30) is that outside the bottom boundary 
layer the third term tends to zero, whilst the second term represents the displacement 
effect of the boundary layer on the external flow, or, in other words, the diffusion of 
periodic vorticity (Stuart 1963). The so-called 'secular term', that is the first term 
in the bracket of (30), fulfils the need of the continuity condition (25c ) .  Its presence is 
entirely consistent with unsteady boundary-layer theory where an external mean 
flow exists. 

The limiting two-dimensional expressions for either progressive waves (with 
m = 1 and n = 0 )  or normal standing waves (with m = 0 and n = 1 )  are readily 
obtainable. The results so reduced are similar to those from Stuart (1963), Schlichting 
(1968), Noda (1968, 1970), Isaacson (1976) and Liu & Davis (1977), for the two- 
dimensional cases, in which the secular term in < also appears in the w1 derivation. 

The secular term < for w1 of (30) becomes infinite theoretically at  the outer edge of 
the boundary layer, because this layer is considered of infinite thickness analytically. 
Since in practice it is of finite size, in fact only some millimetres in magnitude, it is 
deemed reasonable to use the value of < a t  the edge of the boundary layer which has 
been shown from numerical evaluation to approximate 27r (see explanation immedi- 
ately after equation (18)).  This is the dimensional meaning of (18), and therefore 
represents the condition a t  the outer edge of the bottom layer. An alternative value 
to 27r might be assumed where the horizontal velocities are, say, within 1 yo of the 
free-stream values. 

From a theoretical point of view, the boundary layer being considered to be of 
infinite extent in the z direction, it is necessary to conclude that the transition of 
(u, v)  into ( U ,  V )  is asymptotic in nature. However, equations (28) and (29) show 
precisely that these free-stream velocities ( U ,  V )  are reached very rapidly, and the 
assumption of a finite boundary-layer thickness is therefore justified and meaningful. 

To the second order, the dimensionless governing equations are given by 

UZt  - Q u ~ ~ ~  = Uzt + wtl(Ul [L + u, Ul, - wil(ululx + vluly + (&J,)+ u~,u,t;), 

v2t- Qv255 = v,t+w,-l(ulK,+V,KJ - ~ ~ ' ( ~ l ~ l x + ~ l ~ l ~ +  cgw,)*wl%{), 

UZS + v2, + ( two)+  w25 = 0. 

(31) 

(32) 

(33) 

To determine the current unknowns u2 and v2, the given solutions of ul, v1 and uil 
from equations (28)-(30) and U,, US, V, and V, from (22) and (23) are substituted into 
(31) and (32). The resulting partial differential equations contain both time-dependent 
and time-independent terms. These are represented as p and s respectively in the 
subscripts, where p stands for periodic and s for steady-state (i.e. time-independent). 
Hence, using the method of Schlichting (1968) (Iwagaki & Tsuchiya 1966), the com- 
plete solution of u2 and v2 can be found. Accordingly, it is assumed that the super- 

(34) 
position holds, 

up = u 2 p  + U Z S ,  v2 = v2p + v2s, 

subject to the boundary conditions 

U Z P  = U &  = 0 

vzp = V& = 0 

uZp = U2 and 

vzp = T(, and 

and 

(35) 
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The complete solutions of (31)  and (32)  are finally given in dimensionless form as 

u2 = Q1 cos 2X + ( 6 Q 3  - 4Q2) e-5 cos ( 2 X  + 5)  + (Q, - Q 2 )  e-2c cos 2 ( X  + g) 
-2J2Q35e-5cos(2X+6-a7r) -  (Q1-5Q2+ 7Q3)e-4(2)5cos(2X+J2 6) 
+ Q3[2e-5(sin[- 2 cost) - 2 J 2  ce-5 cos (5- in) -I- e-2c + 31, (37)  

and 
v2 = [ - &,sin 2 X -  2Q5e-csin ( 2 X +  g) + 2 4 2  Q5[  e-csin ( 2 X +  6 - 2 ~ )  

+ (Q4+ 2Q5)e-4(2)5sin(2X+J26)]sin2ny+&5[2n2(4e-5sin5+e-2~- 1) 
+ 2 J 2  6e-5 sin (5- in) + 2e-5 cos 5- e2c - 11 sin 2ny, (38)  

in which X = (mx-t) 
and Q1 = 2mPZ cos 2ny + 2mP3, 

Q4 = ZnPz, 
Q5 = nwo/(8 sinh2 d ) .  

Then w2 is obtained from the continuity equation of (33) ,  with the boundary con- 
dition that w2 = 0 a t  6 = 0, and is given as 

wz = ( 2/w0)* [Q6 6 sin 2X - Q7 sin ( 2 X  + Qn) - 8Qs e-5 sin ( 2 X  + <+ an) 
- Qs e-25 sin ( 2 X  + 2% + +r) + Q9 5 e-5 sin ( 2 X  + 5 )  
-t- Qlo e--t/(Z)c sin ( 2 X  + 4 2  5 + in)] 
+ (2/w0)* { 2n3Q5 cos 2ny [4 4 2  e-5 sin ( 5  + Bn) + e-’5 + 2% - 51 

+ 2nQ5cos2ny[25e-5sin~+2e-5co~5-~ge-2~+~-~]},  (41)  
in which 

Q6 = 2mQ1 + 2nQ4 cos 2ny, 

Q7 = m[Ql - 5Q2 + 7Q3 + 9(Q2 - Qd/@l+ n[Q4 + 2&51 cos 2 % ~ ~  

Q9 = 4mQ, + 4nQ5 cos Zny, 

Qlo = m(Ql - 5Q2 + 7Q3) + n(Q4 + 2Q5) cos 2 % ~ .  

j (42)  Q8 = m(Q3 - Qz) /J2 ,  

It is clearly seen from (37) ,  (38)  and (41)  that u2, v2 and w2 consist of periodic part,s 
with and without boundary-layer variables, plus the time-independent terms which 
are varying across the direction normal to the wall. However, there are secular 
terms, deriving from w1 of (30) .  

The time-independent parts of these second-order velocities for just beyond the 
bottom layer, at  6 --f 00 for the horizontal components, and a t  6 = 27r for the vertical 
velocity, are given as 

v;rs = -- T-@o (2n2+ 1)  cos 2ny, 
8 smh2 d 

I 
(43)  

I& = ~ n2wt (21.4n2+ 13.5) cos 2ny.  
8 sinh2 d 
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FIGURE 2. Profiles of Eulerian water-particle velocities ulr uz and uZs through the bottom 
boundary layer at various time steps. 0 = 45", d / L  = 0.1, y / L ,  = 0 and 1. 

Equations for uLs and vLs in (43) agree with conclusions reached by Dore ( I  974), but 
in the present study w;, is not zero as would be obtained by inserting a, = a- = a 
and replacing r r ~  by n in Dore's paper. This finite value of w& is acceptable in the short- 
crested wave system, since the time-averaged particle paths are three-dimensional 
in nature when viscosity is taken into account, as noted by Dore (1973) and private 
communication (1978), and the boundary condition for w1 in (24) at the edge of the 
boundary layer is imposed. The value of wLs can be readily traced back from the con- 
tinuity equations (33) and the time-independent parts in v2 of (38) for satisfying the 
condition w2 = 0 at 5 = 0. In  the two-dimensional case of the progressive wave, 
w& vanishes since n = 0, but it has a finite value in normal standing waves. 

Examples of the maximum Eulerian water-particle velocity profiles through the 
bottom boundary layer are graphed in figures 2 and 3, as functions of the relative 
time step ( t / T ) ,  for the case of relative water depth d / L  = 0.1 and incident angle 
8 = 45". Here the reading of the vertical scale at  32 is for 5 = 2n, representing the 
condition at  the outer edge of the bottom layer, as discussed previously. The curve 
u2 from (37) being the sum of the time-dependent parts u2p and the time-independent 
terms uZs, exhibits strong asymmetry about its own u2 = 0. Figure 4 depicts the 
sinusoidal variations of all velocity components across the crest length (L,) direction, 
for the same case of 8 = 45", d / L  = 0.1 a t  time t/T = 0. 

The vertical water-particle velocities, which hold the suspended materials once they 
are entrained, should receive further attention. Although both w1 and w2 given by 
(30) and (41) have been shown to imply linear profiles at  certain time stages within a 
wave cycle, as demonstrated in figure 3, their dimensional values are in fact small 
compared with those of u1 and u2, because the boundary-layer approximation is 
used throughout. This is also because different variable transformations have been 
used as in (14). Thus the curves of w1 and w2 presented in figure 4, because of the non- 
dimensionalization, are only apparently of the same order as the u and v velocities. 
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FIGURE 3. Profiles of second-order Eulerian water-particle velocities wl, w, and wzs through the 
bottom boundary layer at various time steps. 0 = 4 5 O ,  d / L  = 0.1, y/Ly = 0 and 1. 

4. First approximation to mass transport 
The Lagrangian mean velocity for a single water-particle with continuous path 

is defined as the time-averaged value over one complete wave cycle. This is the con- 
vective derivative of position when moving with the particle, or 

U, = dX/dt = U(X, y, Z, t ) .  (44) 

Here, U(X, y, z, t )  is the Eulerian velocity vector a t  the position (x, y, z )  at the 
time t = ( to+ At) after some small displacements (ti, &, t3) from its initial position 
(xo, yo, zo) a t  t = to. The relationship between the Lagrangian and Eulerian 
velocity, in vector form, is given as 

U,(Xo, yo, 2 0 ,  t )  = U(X0 4- '51, Yo + 629 zo + '$3, t ) .  (45) 

In the three-dimensional case, a function f with some small displacements related to 
its initial position (xo, yo, zo)  may be expanded by the Taylor series, yielding (omitting 
the caret for f )  

f(xo+Ei, yo+&, zo+&i) = f ( X o ,  Yo, 

Upon letting u = f into (46), and introducing the perturbed series 

li = eli l  fez&, + 4e3Li3 + O(e4), with i = 1, 2, 3 for the x, y 
and z directions respectively, (47) 

a = €al + e2a, + 4e34, + O(e4), same for B and 8, 148) 

and so on, (49) oL = so', + e20L2 + 4e3oL3 + 0(e4) ,  

equation (45) yields the necessary equations for deriving the Lagrangian velocity 
field, in the order of parameter E .  The dimensional transforms given by (14) hold 
valid for (47)-(49). 
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FIGURE 4. Variations of first- and second-order Eulerian water-particle valocites for just beyond 
the boundary layer as functions of distances from the reflecting wall. 6' = 4 5 O ,  d / L  = 0.1, t /T = 0. 

Hence for thefirst order in E ,  the relationships between the Lagrangian and Eulerian 
velocity as well as the particle displacement are given in dimensionless form as 

(50)  

(51) 

(52 )  

dell 

d621 v,, = wo- = vl, 

w,, = wo- = wl; 

u,, = w o z  = u1, 

dt 

dt 
d631 

and, for the second order in 8, they are 

(53) 

(54) 

(55) 

d612 

d622 

'L2 = wO dt = uZ + ( 6 1 1  Ulr + 6 2 1  %y + 631 %z) ,  

'$2 = wO dt = ' 2  + (611  vlz + 5 2 1  'ly + 6 3 1  v l a ) ,  

d<32 
&,Z = wO dt = w 2  + ( 6 1 1  wlz + 6 2 1  w l y  + 631 u'lz). 
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The first-order particle displacements (Ell, 521, 531) in the x, y and z directions respect- 
ively, can be obtained by integration with respect to time from (50)-(62). The second- 
order displacements (E12, 622, 632) obtained from (53)-(55) should be used in calculating 
the second approximation of mass-transport velocity. 

To the third order in E ,  more terms are involved in these relationships, 

u.3 = u3 + 2(t12 ulz + 522 + 632 uU + 51Iu2x + 521 %2y + 531 u2z) 

+ (6% u l ~ ~  + '%l ulyy + 5321 %zz) + '(511 521 ulzy + 621 63lu1y# + 631 511 ulzz), (56) 

6 3  = v3 + 2(512 vlx + 522 vly + 632 via: f 511 v2a: + 521 v2y + 531 v2z) 

+ (5?lv1zz + '% 'lyg, + 5% vlzz) + '(611 621 'lzg, + 521 631 'lyz + 631 511 vlez). (57) 

Equations (56) and (57) allow the second approximation of mass transport to proceed. 
The limiting expression of U,, from (56) agrees with that of Isaacson (1976), for the 
two-dimensional case. 

It is necessary now to define the mass transport velocity U,, which may be expressed 
in the form of dimensionless quantities, 

(58) UM = SUM1 + E2u& + *@?7u,3 + o(E4), 

with the same for V, and W,. There is no first-order motion, because the time averages 
of any periodic function over a complete wave cycle would vanish, or U,, = 0. 
Therefore, the first approximation to the mass transport U,, is calculated from the 
time average of (53) over the whole period of 2n, and also for V,, from (54) and TM2 
from (55). The calculation of each time step is included in appendix A. 

Finally, in dimensionless form, the mass-transport velocity components, UM2, 
VM2 and WM2, within the laminar bottom boundary layer in the short-crested waves, 
are given as 

moo 
8 smh2 d 

u& = 7 {[5 + 3e-25 - 8e-5 COS 61 
+[ (4m2+ 1)+(2m2+ 1 ) e - 2 ~ - 8 m 2 e - ~ c o s ~ ] c o s 2 n y } ,  (59) 

V,, = a [ - ( 2n2 + 1)  + ( 2n2 + 1) c 2 5  + 8n2 e-5 sin 63 sin 2ny, (60) 8 smh2 d 

Both U,, and V,, are identical to those derived by Mei et al. (1972) using the Lagran- 
gian form and linear superposition of two first-order velocity potentials. The above 
approach (with Eulerian description and the short-crested wave theory to the second 
order directly) has produced a similar result. This is because the present boundary- 
layer approach is a first approximation. Also, the time-averaged values of u2 and v2 
in the right-hand sides of (53) and (54)  retain only those time-dependent terms 
originating from the interaction of the first-order velocities. This similarity is therefore 
to be expected. 

The expression for U,, of (59) can be reduced readily to the horizontal mass trans- 
port in dimensional form for a progressive wave as derived by Longuet-Higgins ( 1953). 
However, that derived by Mei et al. (1972) cannot be so reduced. The multiplying 
factor in the final expression they derived (i.e. m,ga2/ksinh2 kd, in the present notation) 
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FIGURE 5. Variations of mass transport velocity U,, for just beyond the bottom layer as func- 
tions of specific distance from the reflecting wall and the angles of incidence. d / L  = 0.1. 

appears incorrect, but even when manipulated correctly (see appendix B) it  still 
results in a mass transport velocity four times too great. This was noted by these 
authors as 'that in the present case the amplitude of the limiting progressive wave is 
twice that of' the usual progressive wave (Mei et al. 1972, p. 54). This interpretation 
was repeated in a subsequent publication (Carter, Liu & Mei 1973, p. 173). 

As mentioned previously, it is across the plane normal to the direction of propaga- 
tion that the wave profile, water-particle orbits, velocities and accelerations change 
significantly. For the dimensionless value of the mass-transport velocity as given by 
equation (59)) the numerical value for U,, as 5 -+ co is shown in figure 5 for distances 
across the crest-length (y/L,) and the angle of incidence (0) ,  for the case of d/L  = 0.1. 
It is clear that U,, is unidirectional with one sign throughout. 

The maximum mass transport velocities for various locations are produced in 
figures 6-8, as functions of the relative vertical distance 6 and 0. It is worth noting 
that both V,, and W,, show the flow reversal near the bottom for incident angles less 
than 45". 

5. Experimental data 
To observe water-particle motions close to the bed, polystyrene beads between 1 

and 1.5 mm diameter and specific gravity 1.03 were carefully placed on the perspex 
zone of the bed in a wave basin. The wave basin had a unique T-shaped tunnel, of 
1.8 x 2.1 m cross-section, constructed beneath it (Hsu 1977). The tracers used were 
about one-third of the boundary-layer thickness, which would have made comparison 
with theory difficult. But as a first attempt a t  verification of horizontal velocities and 
mass transport at  the bed the procedure was believed to be both novel and realistic. 
The introduction of a slight negative buoyancy (with specific gravity 1.03) helped to 
retain the beads in the bottom layer during motion. 

A set of experimental data was obtained from a test case of short-crested waves, 
with O = 45") d / L  = 0.213 and H / L  = 0.060 (from T = 0-975s) d = 290mm, incident 
wave height H = 82 mm, and the resulting short-crested wave height H, = 165 mm). 
The orbital motions as illustrated in figure 9 show the recorded positions of beads at  
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FIGURE 6. Mass transport velocity profiles of U M ~  through the bottom boundary layer for various 
angles of incidence. The curve for B = 90" (progressive wave) agrees with Longuet-Higgins 
(1953). d / L  = 0.1, ylLy = 0, + and 1. 

every & s  interval over one complete wave cycle (dots on the curve). The square 
symbols indicate the locations after each wave cycle. The orbits are seen to change 
in character with distance (y/L,) from the reflecting wall. 

A comparison, in fact, was made with mass transport in progressive waves in order 
to assess a scale factor which could be applied to the measurements in short-crested 
waves, as the former has been well established. 

Given a test case, a progressive wave of period 1.0 s and 80 inm height, propagated 
in 303 mm of water depth with water temperature close to the bed a t  20 "C and a 
bottom-layer thickness of 3.545 mm was calculated from 6 = 2(nvT)4. For a poly- 
styrene bead with 1.5 mm diameter, its centre-line was located a t  0.2126 from the 
bed (i.e. the ratio of 0.75/3.545), or in other words, a t  a reading of 6.8 on the vertical 
scale (i.e. 0-212 x 32, with a scale of 32 representing the condition at the outer edge of 
the bottom layer). 

The theoretical profile of the mass transport velocity through the bottom layer is 
shown in figure lO(a), as well as the size of the tracer bead and its centre-line. The 
theoretical velocity at the centre-line is about 12-6 mm s-l. The measured mass 
transport velocities over 8 continuous wave cycles were 5.0, 6-5, 8.0, 6.5, 6.5, 5.5, 7.0 
and 7.5 mm s-1 consecutively, with an average of 6.56 mm s-l. These are also illus- 
trated in the same figure. Thus the scale factor was 0.52 (being the ratio of 6.56/12.6). 

It is seen that the measured mass transport in this case of a progressive wave 
corresponds to a vertical reading of about 3 or 4, say, in figure 10 ( a ) ,  at about a quarter 
of its diameter from the bed. 
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FIGURE 7. Mass transport velocity profiles of V M ~  through the bottom boundary layer for various 
angles of incidence. The curve for 0 = 0" (standing wave) agrees with Longuet-Higgins (1953). 
d / L  = 0.1, y/Ly = Q and 4. 
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FIGURE 8. Mass transport velocity profiles of ?YMa through the bottom boundary layer for 
various angles of incidence. d / L  = 0.1, y / L w  = 4 and 8. 
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FIGURE 9. Orbital paths of beads recorded at specified distances from the reflecting wall. 
Circular dots indicating position at time interval of the wave period, squared points for 
position after each wave cycle. 0 = 45", T = 0.975 s, d / L  = 0.312, E = 0.364. 
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FIGURE 10. Theoretical profiles of the mass transport velocity U M ~  through the bottom boundary 
layer, showing also the measured values plus the size of the tracer bead. (a )  For a case of pro- 
gressive waves, T = 1.0 s ,  H = 80 m, d = 303 mm. ( b )  For a case of short-crested waves, 
0 = 45". T = 0.975 R ,  H , ,  = 165 mm, d = 290 mm, a t  y / L ,  = 0.98 frnm tlhe wall. 
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FIGURE 1 1 .  Series of six orbits recorded at y / L ,  = 0.12 from the wall, 
for the same case of short-crested waves as in figure 9. 

For the same test case of short-crested waves a t  y / L ,  = 0.98 as in figure 9, the thick- 
ness of the wave boundary layer was 3.50 mm. Hence the centre of the tracer bead 
was about 0.2146from the bed (for a bead diameter of 1.5 mm) and was thus located at  
a reading of 6.86 on the vertical scale, as shown in figure 10 (b) .  The recorded values of 
mass transport U,,, over six continuous orbits were 22.5, 23.0, 19.0, 23-5, 22.0 and 
19.5 mm s-l respectively, with an average of 21.58 mm s-1. These measured mass 
transport velocities also correspond to the vertical scale between 3 and 4 as indicated 
in figure lO(b) ,  similar to that of the progressive wave case in figure lO(a) .  The scale 
factor from this was thus at 0.56 (being the ratio of 21.58/38.5, in which the value 38.5 
was the expected &2 a t  the centre-line). This scale factor agrees very well with that 
obtained from the progressive wave case above (being a t  0.52). 

The orbital motions as illustrated in figure 11 show the recorded positions of a 
bead a t  every s interval over 6 complete wave orbits, for the case of y / L ,  = 0.12 
depicted in figure 9. The horizontal tracer velocities ti, and V,, derived from the 3 
continuous wave cycles (i.e. from the squared points 2-5 inclusive), were used and 
compared (figure 12) with theory from (49). 

The experimental data in figure 12 follow the theoretical curves of up and v4 within 
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FIGURE 12. A comparison of measured Lagrangian horizontal velocities UL and V, close to the 
bed with the theoretical curves, as function of time, for a case of short-crested waves m in 
figure 9. The curves of (u4, wp, us, us) being the theoretical water-particle velocities at the reading 
of 4 and 8 respectively on the vertical scale in figure 10(b).  

acceptable limits (here u4 and v4refer to the theoretical particle velocities at  the reading 
of 4 on the vertical scale in figure 106). It is obvious from figures 10 (6) and 12 that the 
measured mass transport U,, and the Lagrangian tracer velocities U, and & were all 
referred to the same level of reference from the bed, i.e. a reading of about 4 on the 
vertical scale in these figures. This agreement was sufficient to prove that the beads 
were moved consistently within the boundary layer. 

6. Two-dimensional limiting cases 
As the general three-dimensional equations are rather complicated for visualizing 

the action directly, it  seems appropriate to present the complete equations of the two- 
dimensional cases for the limiting angles of approach. These include the expressions 
for the Eulerian water-particle velocities and mass transport, all within the laminar 
boundary layer at  the bed. 

For the present short-crested wave theory, equations for the usual progressive wave 
can be obtained when m = 1 and n = 0, and for the normal standing wave when m = 0 
and n = 1. All coefficients of Q are then simplified. The results in dimensionless form 
are as follows. 

For progressive waves, Q; = 3w0/4 sinh4 d,  QL = QA = w0/4 sinh2d, thus 

u1 = [wo/sinh (d ) ]  [cos ( x  - t )  - e-5 cos ( x  - t + (31 ,  ( 6 2 )  

w1 = [ - wg/sinh (d)] [ 4 2  Ysin ( x  - t )  - sin ( x  - t + i n )  + e-5 sin ( x  - t + [+ an)], 

u.2 = Q; cos ( 2 x  - 2t) + 2Qi e-5 cos ( 2 2  - 2t + 6) - 2 4 2  QL ye-5 cos ( 2 x  - 2t + 5 - an) 
(63) 

- (Q;  + 2Qi) e-d@)C cos ( 2 x  - 2t + 4 2  [) 

+ Q L [ 2 e - ~ ( s i n ~ - 2 c o s ~ ) - 2 4 2 ~ e - 5 ~ o s ( P - i n ) + e - ~ 5 +  31, (64) 
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w, = (2/w0)4 [2Qi [sin 2(x  - t )  - + 2 ~ ; )  sin ( 2 x  - 2t - in) 
+ 4Q; [e-csin (2x- 2t + 6)  + (Q;+ 2&;1)e-d@)csin ( 2 x -  2t + 4 2  <+ an)], (65)  

and U,, = [0,/4 sinh2 d ]  ( 5  + 3e-25 - 8e-5 cos 6)) 
yw2 = w,, = 0. 

(66)  

(67)  

(68)  

(69)  

For standing waves, Q; = 3QL/sinh2d = 3w0/8sinh4d, thus 

vl = [wo/sinh ( d ) ]  [sin t - e-5 sin (t - 5)]  sin y, 

w1 = [oi/sinh ( d ) ]  [ J 2  lsint  - sin (t - an) + e-5 sin (t - 5- in )]  cosy, 

v, = [Qi sin 2t + 2Q;e-5 sin (2t - 5)  - 2 4 2  QL5 e-(sin (2t - 5+ in) 
- (Qi + 2Q;) e-d@)[ sin (2t - J 2  c)] sin 2y 

+ Q$3e-c sin 5+ 2e-5 cos <+ 2 4 2  5e-5 sin (5- in) + e-,5 - 31 sin 2y, (70)  

w ,  = (2/wo)3 [ - 2Q;csin 2t + (Q; + 2Q;) sin (2t - an) - 4QLCe-c sin (2t - 5)  
- (Q; + 2Q;) e-q@)c sin (2t - 4 2  5 - in)]  cos 29 

+ (2/w0)*[842e-5sin(6+in)+45e-5sin5+4e-5cos5 

+ e-2c + 6C- 131 QL cos 2y, 171) 

(72)  
and 

V,, = [ w 0 / 8  sinh2 d ]  ( - 3 + 3e-,5 + Se-5 sin [) sin 2y, 

W,, = [(2w0)3/8sinh2d] [ -  l l +  65+3e-25+842e-5sin(5+in)]cos2y. (73)  

The dimensional equations for (ul, vl, w l )  and (u,, u,) agree with that derived by 
Noda (1970).  However, w, had not been attempted for either limiting case. 

The dimensional expressions for UMz, V,,, and W,, can readily be obtained from (66) )  
(67) )  (72)  and (73)  by variable transformations as in (14) .  The velocity profiles of 
U, and V, from (66)  and (72)  agree with those of Longuet-Higgins (1953, p. 567, 
equation (253)) .  Thus, for just beyond the bottom boundary layer, at  6 = 2n (i.e. for 
5 --f co theoretically), these equations become, 

for progressive waves, 
5 kga2 

uMz = 4 sinh2 Ed ' 

VM, = W M ,  = 0, 
and, for standing waves, 

3 kaa2 v -  sin 2ky, 
M 2  - - 8 sinh2 kd 

(74)  

(75) 

(76)  

in which the notation a denotes the amplitude of progressive and standing waves 
respectively. Again, the dimensional limiting values of U,, and V,, from (74)  and 
( 7 6 )  agree with the well-known equations given by Longuet-Higgins (1953, equations 
(255)  and (262)) .  

The physical significance of equations (74)-(77) is demonstrated by the following 
calculation. Given a 10 s wave train in 5 m water depth, with average water tempera- 
ture a t  25 "C, then L = 67.64 m, k = 0-093, cr = 0.628 and v = 0.93 mm2 s-l. Therefore 
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for a progressive wave, UM21(k~a2/sinh2kd) = 1.250 from (74) and, for the standing 
wave, VM2/(kcTa2/sinh2 kd) = 0.375 from (76).  Thus, the ratio uM2/vM2 = 3.33 for the 
same wave amplitude a. Within the standing wave itself, WM2 a t  the anti-node is 
about 1.424 (or 0.53410.375) times as great as the V,, value a t  nodal point, as derived 
from (77) and (76). This could well explain the reason for the strong suspension at  
the anti-nodal position in standing waves, It might also constitute the vertical ‘jet- 
like’ motions beneath the anti-nodal points, as reported by Mei et al. (1972) and Dore 
(1976). 

The senior author is grateful for the helpful suggestion from Dr B. D. Dore of the 
University of Reading, and to the referees, for their constructive comments on secular 
terms which have led to a number of improvements of this work. 

Appendix A 

equations (53)-( 55) is as follows. 

variables. Thus the time-average of two functions of A and B may be expressed as 

The derivation of mass transport velocities by the time-averaging process from 

It is more convenient to process alf the time-averaged steps by means of complex 

A B = -  (AB)dt’ = iRe[A,B,*] = +Re[A,*B,], 

in which A = A, exp(iat), B = B,exp (id); where Re indicates the real part and * the 
conjugated part of a complex variable. Taking the mass transport in the x direction 
for example yields, from (53): 

where the overbar denotes the time average over one wave period, similarly, 

(80) 
1 

Wn 
61, = E2 + - [ V12 .J-; uldt’ + VIY .so” v, dt’ + VlZ .J-; w,dt’] ) 

By inserting the first-order Eulerian velocity components, ul, v1 and w1 from ( 2 8 ) -  
(30)) and the second-order solutions of u2, v2 and w2 from (37),  (38) and (41)) into 
equations (79)-(81)) the results of each averaged step can be obtained: 

- 
u2 = a [ 2 e - ~ ( s i n ~ - 2 ~ o s ~ ) - 2 ~ e - ~ ( s i n ~ + c o s ~ ) + e - ~ ~ + 3 ] c o s ~ n y ,  (82) 

4 smh2 d 

m3 W t  
[ 1 - 2e-5 cos 5 + e-25Icos2 ny, 

2 sinh2 d 

[ 1 - 2e-5 cos + e-251 sin2 ny, 

[<e-b(sin<+ cost) -e-csin<] cos2ny, (85) 2 sin h2 d 
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- 
v - _nwO ~2ny4e-5 sin 6 + e-25 - 1 - 8 sinh2d 

+ 2 e - ~ c o s ~ + 2 < e - ~ ( ~ i n ~ - c o s ~ ) - e - ~ ~ -  l]sin2ny, (86) 

(87) 

not 
4 sinh2 d 

[c e-5( - sin 5 + cos 5) - e-5 cos 5 + e-26] sin 2ny, (88) 

and consequently 

- (2wo)+n4 
w2 = - [4 42 e-5 sin (5  + in) + e-25 + 25 - 5 )  cos 2ny 

4 sinh2 d 
(2w0)+n2 
4 sin h2 d + 7 [25 e-5 sin 5 + 2e-5 cos 5 - & r 2 5  + 6 - $1 cos 2ny, (89) 

( 2wo)i m2wo 
[2<e-csinc+ 2e-5cos5-e-25- 1]cos2ny, (90) 

wly ./: v1 dt' = [2cedsin5+ 2e-5cosc-e-25- i] sinzny, (91) 

( 92) 

4 sinh2d 

( 2w0)+ n200 
4 sinh2 d 

[ 2 j  e-5 sin <+ 2e-5 cos 6 - e-25 - 1 1 cos2 ny. 
4 sinh2 d 

Thus, the final expressions for UAI2, yn12 and W,, of (79)-(81) can be readily derived. 
The results are given as equations (59)-(61) in the text. 

Appendix B 
The final expression of the mass transport velocity u M 2  in a short-crested wave as 

derived by Mei et al. (1972) and subsequently repeated by Carter et al. (1973), in 
dimensional form was given as 

u -  m1ga2 {[8m; cos 2n, y + 8k2] e-5 cos 5 
M 2  - k sinh2 kd 

- [(3m; - n;) cos 2n1 y + 3k2] e-25 - [ ( 5 4  + n4) cos 2n1y + 5k2]}, (93) 

using the present notation, in which m;+n; = k2. Thus, just beyond the bottom 
layer, a t  5 + 00, and for the limiting progressive wave with m1 = k and n, = 0,  equa- 
tion (93) becomes U,, = - 10gk2a2/sinh2 kd. (94) 

This does not agree with that of Longuet-Higgins (1953) nor (74) in the text. After 
following through the calculation procedure it was found that the correct expression 
should read 

(95) 

(96) 

m1ga2 (the same expression in the bracket as (93))) 
= ka sinh2 kd 

so that U,, = - 5kaa2/sinh2 kd, 

which is also four times greater than the value given in (74). 
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